Doing Different in the Mathematics Classroom

1477469558_tmp_Andrews__2_

Stephanie Cockrell Andrews, Ed.D.

Dr. Stephanie Cockrell Andrews is a mathematics professor and the mathematics department lead faculty at Lone Star College-Kingwood (LSC-K).  She has earned degrees from East Texas Baptist University, Stephen F. Austin State University, and Sam Houston State University. This is her 28th year in education, where 15 of those years were in public education as a secondary mathematics teacher and counselor.  Stephanie was a 2006 Project ACCCESS fellow with the American Mathematical Association of Two-Year Colleges (AMATYC). She has received the Faculty Excellence Award at LSC-K and the Educational Leadership Doctoral Award at Sam Houston State University.  She is a member of the Delta Kappa Gamma Society International for Key Women Educators. 

In the report, Closing the Gaps by 2015: 2009 Progress Report, the Texas Higher Education Coordinating Board (THECB, 2009) stated, “Texas must take bold steps for the future success of its people” (p. ii). Being the math chair, my president was always stressing to me that we needed to increase student success (A, B, or C) in our developmental courses, to get more students to and through our gateway mathematics course—and to do it all faster! Add in the definition of insanity—attributed to several, including Einstein (Howes, 2009)—of “doing the same thing over and over again and expecting different results,” and I was determined to do something that was bold and different.

So, during 2013 – 2014, I taught Foundations of Mathematical Reasoning (FMR) and Statistical Reasoning (SR) using the curriculum from The Dana Center at The University of Texas in Austin, and it rocked my academic world. I am a dedicated, traditional algebra teacher, and I have received awards for teaching, but when I taught these courses, my life and the lives of my students changed. The New Mathways Project (NMP) courses are based on principles including to provide relevant and rigorous mathematics, help students complete college-level math courses faster and use intentional strategies that help students grow as learners (The Charles A. Dana Center, 2013).

I have always been told that, while I am teaching, I should include real-world problems, interdisciplinary activities, collaborative work, active learning, productive struggle, reading and writing. I could not get all of this included much less included well, but NMP incorporates all of these skill—all based on proven practice! I did it with NMP!  I saw it work for me and be transformational for my students.

Even though this is controversial, I believe what I experienced teaching these courses is a strong rationale that this can be done and should be done. The courses are rigorous, involve collaborative learning; are saturated with real-world problems that the students get excited about (e.g., blood-alcohol-level formula for order of operations); teach students to be much better college students and well-informed citizens; and are much more closely aligned with degree programs than college algebra for non-STEM majors.

Testimonials from students include a video from Holly at https://utexas.box.com/s/vmr9xlba4kxv66csehm35obdsm716yml.

And an article by Kaleena Steakle at https://www.theguardian.com/pearson-partner-zone/2016/aug/31/approaching-math-differently-to-change-lives.

I have been working the last two years for The Dana Center helping other professors in our state and nation implement the NMP materials, but this week, I started back in the classroom! I have three, full FMR classes, and I am extremely excited to see how the students will grow this semester and be propelled to the next steps of their careers.

References

Howes, Ryan. (2009, July 27). The definition of insanity is…perseverance vs. perseveration. Retrieved from https://www.psychologytoday.com/blog/in-therapy/200907/the-definition-insanity-is

Texas Higher Education Coordinating Board. (2009). Closing the gaps by 2015: 2009 progress report. Retrieved from http://www.thecb.state.tx.us/reports/pdf/1852.pdf

The Charles A. Dana Center. (2016). The New Mathways Project curricular materials. Retrieved from http://www.utdanacenter.org/higher-education/new-mathways-project/new-mathways-project-curricular-materials/

 

Part-Whole Study Improves Memory for Science Information

Kiser copy small

Michelle Kiser, Ed.D.

Dr. Michelle Kiser received her Bachelor of Science, Master of Arts, and Doctorate of Education at Texas Tech University.  Michelle completed her dissertation on the “Developmental Students Sources of Self-Efficacy and the University Academic Support Program Impact.” Michelle worked as the Assistant Director of Texas Success Initiative (TSI) Developmental Education Program for five years prior to being promoted to the Director of Support Operations for Academic Retention (SOAR) in May 2009. Michelle manages four programs within SOAR: The Learning Center, Supplemental Instruction, Texas Success Initiative, and Programs for Academic Development and Retention. Michelle has been employed by Texas Tech University for over 14 years. In addition, Michelle is an adjunct instructor for the College of Education at Texas Tech University teaching Teacher Education courses in Content Area Reading.  In her spare time, Michelle volunteers for Court Appointed Special Advocates (CASA).

Segmentation of information has been shown to increase comprehension and retention of multimedia materials (Mayer & Chandler, 2001; Mayer, Dow & Mayer, 2003; Singh, Marcus & Ayres, 2012). We wondered if memory for science text could be improved by studying information in pieces and then all together.

In a part-whole study method, the person studies the text in several parts and then as a whole, rather than being presented immediately with the whole text. We conducted an experiment to determine whether a part-whole method would enable non-developmental and developmental readers to recall more from a science text compared to using a whole-text method.

Forty-three developmental college readers and 52 non-developmental college readers studied a science text about sea otters. The complete text was about 300 words and had a readability level at approximately an 8th grade level. Half the students in each group were presented with the whole text, and half were presented with the text using the part-whole method. All students studied the text for 10 minutes total. The text was presented on a computer screen, and the timing was controlled by the computer. After studying the text, students were asked what percentage of the text they thought that they comprehended, and what percentage of the text they thought they could recall. They were then asked to recall as much of the text as they could using the computer. Recall was measured using the number of idea units from the passage that each student was able to recall.

The study showed the superiority of the part-whole method when studying science texts. The non-developmental students recalled more idea units than the developmental students, but importantly, both non-developmental and developmental students recalled more idea units when using a part-whole method instead of a whole-text method.

Developmental students who used a part-whole method compared to those who used a whole-text method reported that they comprehended a greater percentage of the text.

Developmental students who used a part-whole method compared to those who used a whole-text method predicted that they would recall a greater percentage of the text—and they actually did!

Overall, the findings suggest that developmental and non-developmental readers are not qualitatively different. Rather, they engage in similar processes, but differ in the skill and effectiveness with which they apply those processes.

As Nist and Simpson point out, “[T]he complexity of learning and studying…cuts across all college students, not just developmental students or students who are struggling” (quote from Stahl, 2006, p. 21).

References

Mayer, R. E., & Chandler, P. (2001). When learning is just a click away: Does simple user interaction foster deeper understanding of multimedia messages? Journal of Educational Psychology93(2), 390.

Mayer, R. E., Dow, G. T., & Mayer, S. (2003). Multimedia learning in an interactive self-explaining environment: What works in the design of agent-based microworlds? Journal of Educational Psychology95(4), 806.

Stahl, N. A. (2006). Strategic reading and learning, theory to practice: An interview with Michele Simpson and Sherrie Nist. Journal of Developmental Education, 29 (3), 20-24, 26, 27.