The Many Legacies of Dr. Claire Ellen Weinstein, Part 1 Tribute: Learning Frameworks Courses

ClaireEllen

Dr. Claire Ellen Weinstein

“Much have I learned from my teachers, more from my colleagues, but most from my students.” ~Talmud, Ta’anit 7b

Dr. Claire Ellen Weinstein was Professor Emeritus at the University of Texas at Austin. Dr. Weinstein is renowned for groundbreaking research on learning strategies, her Model of Strategic Learning, and as senior author of the Learning and Study Strategies Inventory. Dr. Weinstein’s research and practice in strategic learning has helped to define strategic learning courses, curriculum, and instruction across the U.S. and abroad, and especially in Texas; her legacy lives on in her many students and her students’ students. Of particular interest for this tribute (Part 1) is her college-level, 3-credit, learning frameworks course, Individual Learning Skills (EDP 310), offered through the Educational Psychology Department at the University of Texas at Austin since 1975.

EDP 310 is designed to help students learn how to learn. The course enrolls students of all levels, but especially those who enter the university under special circumstances or who experience academic difficulty. Course content is driven by Weinstein’s Model of Strategic Learning, inspired by systems theory and Gestalt psychology, which emphasizes that strategic learning emerges from the interactions among elements within four major components: skill, will, self-regulation, and the academic environment.  Weinstein attributes many of her ideas about strategic learning to one of her mentors, Wilbert J. McKeachie, and his research at the University of Michigan on strategic teaching (Weinstein, 1994; Weinstein, Acee, Jung, Krause, Dacy, & Leach, 2012).

In 1999, the Texas Higher Education Coordinating Board authorized formula funding of up to three credit hours for courses following a learning frameworks curriculum, which must include, “…1) research and theory in the psychology of learning, cognition, and motivation, 2) factors that impact learning, and 3) application of learning strategies” (Hill, 2000, para. 4). The policy change was a result of two learning framework course studies, one from the University of Texas at Austin (based on EDP 310—Individual Learning Skills) and the other from Texas State University (based on EDP 1350—Effective Learning), which presented statistically significant improved student retention and graduation rates for students successfully completing multiple sections of these learning frameworks courses as compared to other students not enrolled (Hill, 2000).

Learning frameworks courses provide instruction on learning strategy applications and inform students of theoretical frameworks that underpin each strategy drawing from educational neuroscience, metacognition, behaviorism, and constructivism—among many others. Most “study skills” courses teach students specific techniques and methods in isolation, such as content mapping, comprehension monitoring, and textbook annotation, focusing on acquisition of a skill but not comprehensive understanding of why and how learning can be enhanced by using that technique. Learning frameworks courses help students to assess their own learning strengths and weaknesses so that, once introduced to theories and strategies, students can understand the reasons for engaging in specific studying behaviors. Practicing learning strategies with their other course content is essential for the transfer of this knowledge (Hodges & Agee, 2009; Hodges, Sellers, & Dochen, 2012).

While learning frameworks courses are offered throughout U.S. postsecondary institutions, Texas has been at the forefront; approximately 90% of 2-year institutions and 75% of 4-year institutions offer multiple sections of these courses. Many of Texas’s 2-year institutions now require all first-year students to enroll in the course while 4-year institutions more typically offer the course to special populations such as conditionally-admitted students or students on academic probation. High schools are also now beginning to offer learning frameworks courses as dual-credit courses (Acee & Hodges, 2017).

Dr. Weinstein was a pioneer in postsecondary access and success; she knew that every student could learn, and she dedicated her life to that end.  Learning frameworks courses are one of her many legacies. We honor her memory as we continue to expand the reach and effectiveness of these courses and help students to become more strategic and self-regulated lifelong learners.

Authors

russhodges

Russ Hodges, Ed.D.

Dr. Russ Hodges is Associate Professor in the Graduate Program in Developmental Education in the Department of Curriculum and Instruction at Texas State University. He earned his Ed.D. in developmental education from Grambling State University and his M.Ed. from University of Louisiana in Monroe. Dr. Hodges’ research focuses on postsecondary student success, postsecondary student success courses, interventions for students diagnosed with AD/HD, and demographic changes in higher education. The learning framework model that he co-developed serves as a curriculum model for many postsecondary learning framework courses throughout Texas and the nation. Dr. Hodges has held state and national leadership positions including president of the College Reading and Learning Association (CRLA) and chair of the Council of Learning Assistance and Developmental Education Associations (CLADEA). He is an active scholar, having published three books, many journal articles, book chapters, and conference papers along with four research grants totaling just over 1 million dollars. He is also a frequent invited speaker for conferences for postsecondary faculty and staff development.  Dr. Hodges has received many awards, including the Lifetime Achievement Award from the College Academic Support Programs conference, and outstanding service awards from both CRLA and the National Association for Developmental Education (NADE).  In 2009, Dr. Hodges was named National Fellow for CLADEA—his field’s most prestigious honor. 

tayloracee (1)

Taylor Acee, Ph.D.

Dr. Taylor W. Acee is Associate Professor in the Graduate Program in Developmental Education in the Department of Curriculum and Instruction at Texas State University. He earned his Ph.D. and M.A. in educational psychology at The University of Texas and his B.S. in psychology at the University of Pittsburgh. His program of research is focused on cognitive, metacognitive, motivational, and affective factors that contribute to and detract from student success in postsecondary education. In his research, Dr. Acee targets variables that are causative, account for a meaningful amount of the variation in student success, and are amendable to change through educational intervention. He is internationally known for his collaborative work on personal relevance interventions, academic boredom, and strategic learning assessments and interventions. His research activities have resulted in over 30 refereed publications, 5 funded research grants totaling over $800,000, and various other scholarly activities.

References

Acee, T. W., & Hodges, R. (2017). [Learning framework courses in Texas]. Unpublished raw data.

Hill, M. A. (2000, March 31). Funding for “Learning Framework” courses [Memorandum to Chief Academic Officers, Public Senior Universities]. Austin, TX: Texas Higher Education Coordinating Board.

Hill, M. A. (2000, March 31). Funding for “Learning Framework” courses [Memorandum to Chief Academic Officers, Public Senior Universities]. Austin, TX: Texas Higher Education Coordinating Board.

Hodges, R., & Agee, K. (2009). Program management. In R. F. Flippo &  D. C. Caverly (Eds.), Handbook of college reading and study strategy research (pp. 351-378). New York: Routledge.

Hodges, R., Sellers, D., & Dochen, C. W. (2012). Implementing a learning framework course. In R. Hodges, M. L. Simpson, & N. A. Stahl (Eds.), Teaching study strategies in developmental education: Readings on theory, research and best practice (pp. 314-325). Boston, MA: Bedford St. Martin’s.

Weinstein, C. E., Acee, T. W., Jung, J., Krause, J. M., Dacy, B. S., & Leach, J. K. (2012). Strategic learning: Helping students become more active participants in their learning. In K. Agee & R. Hodges (Eds.), Handbook for training peer tutors and mentors (pp. 30-34). Mason, OH: Cengage Learning.

 

Transforming Instruction with Technology

Vega-Rhodes_ProfilePic

Nathalie Vega-Rhodes

Nathalie Vega-Rhodes is currently a professor of mathematics and the mathematics technology coordinator at Lone Star College – Kingwood. She specializes developmental education redesign and focuses on researching and create valuable resources for students and instructors. Prior to her time at Lone Star, Vega-Rhodes taught mathematics and college student success courses at other institutions around the Houston area. Vega-Rhodes earned a Bachelor of Arts degree in mathematics with a minor in geology from the University of Houston and a Master of Science degree in mathematics from the University of Houston-Clear Lake. In her spare time, she enjoys reading, traveling, and scuba diving.

Technology is advancing exponentially in our world; its use is growing in our classrooms whether we want it to or not.  Beetham and McGill (2012) observed that technology is “transforming what it means to work, study, research, express oneself, perhaps even to think.”   Bowen (2014) agrees and would further add that this growth has made course design and pedagogy more important than ever.  Given this current and irreversible trend, we must harness the benefits of this tool to enhance learning in the classroom.

As instructors, it’s incumbent upon us to leverage technology to engage students as well as organize our courses in a clear and concise manner.  Learning management systems (e.g. Moodle, Desire2Learn, Blackboard, etc.) at most institutions are a means by which instructors can manage learning and connect with students.  Clearly-named modules, checklists and release restrictions ensure access to relevant information and keep students on track.  Additional features such as Intelligent Agents allow instructors to define criteria for automated and personalized communication at critical points throughout the semester.

Other options for creating dynamic courses are college-supported software programs such as Softchalk or Webex.   For example, Softchalk can be used to create interactive lessons, while Webex can be used to meet with students virtually, thereby eliminating the age-old problem of providing timely feedback for students who are not present in a traditional face-to-face classroom.  Instructors and students can share screens to discuss concepts or work out examples, either one-on-one or in a group.  An added benefit of these software programs is that they can be integrated with most learning management systems, making for a seamless student experience.

While proper organization is unquestionably important, by itself it is insufficient.  One of the problems that instructors have traditionally faced is lack of available information, which means that instructors may not always know when to intervene or what interventions are necessary.  A valuable tool to solve these problems is the analysis capabilities in online homework systems. Easily accessible reports can be used to track progress and determine challenging concepts for individual students or the entire class.  This data can be used for evaluating current assignments or improving future courses.

In addition to online homework systems, an easy and convenient way to engage students is by harnessing the capabilities of pervasive smartphone or tablet apps.  A few favorites include Attendance (easy recording/reporting of student attendance), Show Me (easy video creation), Notability (note-taking), and Google Voice (texting/phone calls without sharing a personal phone number). Each of these apps have the potential to increase efficiency with everyday tasks.

In summary, these tools, when coupled with thoughtful implementation, can truly impact teaching and learning.  McLoughlin and Lee (2008) stated that “technological resources provide opportunities for a range of interactions, communicative exchanges, and sharing, but it is not possible to base an entire sequence of learning episodes based on tools.”  Indeed, I am able to do more and better for my students since the immediate feedback allows me to tailor specific solutions based on each student’s needs.  I look forward to increased productive interactions with my students using innovations, both present and future.

References

Bowen, J. A. (2014). The teaching naked cycle. Liberal Education100(2), 18-25.

Littlejohn, A., Beetham, H., & McGill, L. (2012).  Learning at the digital frontier: a review of digital literacies in theory and practice. Journal of Computer Assisted Learning, 28(6), 547-556. doi:10.1111/j.1365-2729.2011.00474.x

McLoughlin, C. & Lee, M. J. W. (2008). The three p’s of pedagogy for the networked society: Personalization, participation, and productivity. International Journal of Teaching and Learning in Higher Education, 20(1), 10-27.

How to Contextualize Math Using Infographics

bio pic Patricia Helmuth2 (2)

Patricia Helmuth

Patricia Helmuth is an Adult Numeracy Consultant and Educator. She teaches two HSE classes, does one-on-one tutoring (in partnership with the Center for Workforce Development), and is a Professional Development Team Member for the Adult Program at Sullivan County BOCES, NY. In addition to working with students, she enjoys sharing her “numeracy adventures” at the regional, state, and national level by presenting at conferences and writing for adult education web-based resources. She currently serves as the newsletter editor for The Adult Numeracy Network.

In a traditional math classroom, where math topics may be taught in isolation, students watch the instructor model a procedure on the board and then students are expected to memorize, repeat, and practice the procedure. The trouble is, many students have difficulty connecting the procedure to real-life applications. This disconnect that students experience is evidenced in ABE/HSE classes, as well as on college campuses in developmental math classes. According to Models of Contextualization in Developmental and Adult Basic Education, “…students who want to be nurses, EMTs, firemen…. are stuck in a course that doesn’t work.” Conversely, when math is contextualized, students can develop conceptual understanding of the math.  “Research supports the fact that students understand math better when it is contextualized. It motivates and increases the students’ willingness to engage (Tabach & Friedlander, 2008) and provides concrete meaning to the math (Heid et all, 1995).” – (2015 Center for Energy Workforce Development)

In light of this research, and the implementation of the Common Core State Standards and the release of the Workforce Innovation and Opportunity Act, adult education instructors are being called upon to make changes in classroom practice that will adequately prepare students to pass new high-stakes exams and enter college and the workforce with marketable skills. How can adult educators do all this given the short amount of time that adults typically spend in class?

A great place to start is by using a variety of authentic infographics that connect to the social studies, science, or career readiness that you are already teaching. By using infographics, you are combining content knowledge, math skills, and analyzing and interpreting graphic information into one lesson! While infographics may be new to some of us in adult education, they are not new to our students. They see them all the time in the real world so it is imperative that they develop skills to decode them. Besides all that, they are fun! Students are drawn into a conversation when you display an infographic and simply ask:

  • What do you notice? What do you wonder?

Students at all ability levels can participate in a lesson that is introduced like this. Furthermore, when students share out their observations and questions it serves as a formative assessment and enables the instructor to connect what students already know with the whatever math concept the instructor has in mind to draw out of the infographic.

For specific lesson plans and ideas on how to do this, go to:

In the Adult Education classroom today, we need to do more than present our students with workbooks that include traditional examples of maps, charts, and graphs.  We need to use what our students see all around them every day: infographics.

References

Center for Energy Workforce Development (2015). Contextualized math for the energy industry. Retrieved from http://www.cewd.org/contextualized-math/

Education Development Center (EDC). (2012). Models of Contextualization in Developmental and Adult Basic Education. Retrieved from EDC website: http://bit.ly/1KAnllT

 

Doing Different in the Mathematics Classroom

1477469558_tmp_Andrews__2_

Stephanie Cockrell Andrews, Ed.D.

Dr. Stephanie Cockrell Andrews is a mathematics professor and the mathematics department lead faculty at Lone Star College-Kingwood (LSC-K).  She has earned degrees from East Texas Baptist University, Stephen F. Austin State University, and Sam Houston State University. This is her 28th year in education, where 15 of those years were in public education as a secondary mathematics teacher and counselor.  Stephanie was a 2006 Project ACCCESS fellow with the American Mathematical Association of Two-Year Colleges (AMATYC). She has received the Faculty Excellence Award at LSC-K and the Educational Leadership Doctoral Award at Sam Houston State University.  She is a member of the Delta Kappa Gamma Society International for Key Women Educators. 

In the report, Closing the Gaps by 2015: 2009 Progress Report, the Texas Higher Education Coordinating Board (THECB, 2009) stated, “Texas must take bold steps for the future success of its people” (p. ii). Being the math chair, my president was always stressing to me that we needed to increase student success (A, B, or C) in our developmental courses, to get more students to and through our gateway mathematics course—and to do it all faster! Add in the definition of insanity—attributed to several, including Einstein (Howes, 2009)—of “doing the same thing over and over again and expecting different results,” and I was determined to do something that was bold and different.

So, during 2013 – 2014, I taught Foundations of Mathematical Reasoning (FMR) and Statistical Reasoning (SR) using the curriculum from The Dana Center at The University of Texas in Austin, and it rocked my academic world. I am a dedicated, traditional algebra teacher, and I have received awards for teaching, but when I taught these courses, my life and the lives of my students changed. The New Mathways Project (NMP) courses are based on principles including to provide relevant and rigorous mathematics, help students complete college-level math courses faster and use intentional strategies that help students grow as learners (The Charles A. Dana Center, 2013).

I have always been told that, while I am teaching, I should include real-world problems, interdisciplinary activities, collaborative work, active learning, productive struggle, reading and writing. I could not get all of this included much less included well, but NMP incorporates all of these skill—all based on proven practice! I did it with NMP!  I saw it work for me and be transformational for my students.

Even though this is controversial, I believe what I experienced teaching these courses is a strong rationale that this can be done and should be done. The courses are rigorous, involve collaborative learning; are saturated with real-world problems that the students get excited about (e.g., blood-alcohol-level formula for order of operations); teach students to be much better college students and well-informed citizens; and are much more closely aligned with degree programs than college algebra for non-STEM majors.

Testimonials from students include a video from Holly at https://utexas.box.com/s/vmr9xlba4kxv66csehm35obdsm716yml.

And an article by Kaleena Steakle at https://www.theguardian.com/pearson-partner-zone/2016/aug/31/approaching-math-differently-to-change-lives.

I have been working the last two years for The Dana Center helping other professors in our state and nation implement the NMP materials, but this week, I started back in the classroom! I have three, full FMR classes, and I am extremely excited to see how the students will grow this semester and be propelled to the next steps of their careers.

References

Howes, Ryan. (2009, July 27). The definition of insanity is…perseverance vs. perseveration. Retrieved from https://www.psychologytoday.com/blog/in-therapy/200907/the-definition-insanity-is

Texas Higher Education Coordinating Board. (2009). Closing the gaps by 2015: 2009 progress report. Retrieved from http://www.thecb.state.tx.us/reports/pdf/1852.pdf

The Charles A. Dana Center. (2016). The New Mathways Project curricular materials. Retrieved from http://www.utdanacenter.org/higher-education/new-mathways-project/new-mathways-project-curricular-materials/

 

Acceleration in Mathematics (AIM)

Photo_Anderson Foxley

JP Anderson, Ph.D., & Kristen Foxley

JP Anderson (Ph.D., Rice) and Kristen Foxley (M.S., University of Houston—Clear Lake) have been teaching math for over 20 years. They share not only a passion for teaching, but for running as well, and have been running together for the past 10 years. Both JP and Kristen were part of the original design team for AIM and have been co-teachers since its beginning in 2012.  In addition to working with students, they enjoy providing professional development for faculty on ways to incorporate active learning in the classroom and presenting on AIM at conferences at the local, state, and national level. 

Nationwide, over 40% of students enter college needing one or more developmental courses. Unfortunately, traditional methods of remediation are not successful in preparing students for success in credit-bearing courses. In Texas, for example, only 12% of community college students who begin in developmental math courses will pass a gateway math course, such as college algebra, within 2 years (Complete College America, 2016). Although counterintuitive to some practitioners, many colleges have improved success through accelerated course offerings (Jaggars, Edgecombe, and Stacey, 2014), with corequisite models showing particular promise (Complete College America, 2016).

After implementing such a model, Acceleration in Mathematics (AIM), in Fall 2012, San Jacinto College has seen a significant improvement in student success. A study of seven long semesters’ data showed that 64.1% of AIM students passed college algebra with a grade of C or better, compared to 44.8% in traditional college algebra classes. This is especially notable since the majority of AIM students who are placed into developmental math courses are one or two levels below college algebra. Moreover, AIM narrowed the success gap for Hispanic students—approximately half of our student population—from 6% to less than 1%. In addition to AIM’s impact on students’ cognitive learning and academic success of students, a separate study showed improvements in their attitudes, feelings, and mindset regarding their mathematical abilities (Campbell, 2015).

Acceleration in Mathematics is a one-semester corequisite pairing of math courses that allows students who are not college ready in mathematics to complete all developmental requirements as well as college algebra in a single semester. Students who take AIM sign up for two classes: a three-contact-hour developmental course and a four-contact-hour college algebra course.  A typical AIM section meets Monday through Friday for a total of seven hours each week. AIM is team-taught by two instructors, one experienced in teaching traditional college algebra and one who specializes in developmental math instruction, both of whom are in the classroom for all class meetings and who share equally in the teaching duties.

  • Just-in-Time Remediation. Unlike traditional multi-semester or accelerated sequential remediation models, which teach basic skills weeks or months before they are needed in college algebra, AIM integrates these skills right before they are needed in the college algebra curriculum. For example, simplification of radical expressions is introduced just before the quadratic equation.
  • Streamlining. AIM focuses on learning objectives prescribed by the Texas Higher Education Coordinating Board. Some skills that have been part of the traditional developmental math curriculum, but which are not needed for college algebra, such as rationalizing the denominator, have been eliminated.
  • Active Learning. Daily lessons alternate brief lectures with small-group practice activities. To maximize student interaction and foster a sense of community, instructors use a technique called “clock partners” to pair students with a different practice partner each day.
  • Low-Stakes Assessment/Prompt Feedback. AIM students turn in daily homework assignments of approximately 25 questions. A portion of the problems are graded, and the assignments are returned the following day. Answer keys are available online for the ungraded problems. Students are tested every other week, for a total of seven unit tests and a final exam. Each unit test counts only 9% of the semester grade, making it possible for students to recover from one or two setbacks.
  • Cumulative Review. Every homework assignment and exam contains review problems to help students maintain essential skills throughout the semester.
  • Learning Resources. AIM students have online access to instructor-authored videos providing examples of all topics and worked-out solutions to the exam review sheets. San Jacinto College’s Student Success Center has a designated AIM table for on-campus tutoring. Also, thanks to the strong sense of class community, AIM students often form study groups on their own.

AIM has proven most successful for students required to take college algebra for their associate’s degree. To support students who would benefit from an alternative math pathway, however, the college has begun offering corequisite courses for developmental students seeking credit in a statistics or quantitative reasoning course. Early results show that these pathways show similar promise.

References

Campbell, P.S. (2016). Self-Efficacy in a Co-requisite Model of Developmental Mathematics and College Algebra: A Qualitative Analysis of Student Perceptions (Doctoral Dissertation). Retrieved from https://ttu-ir.tdl.org/ttu-ir/handle/2346/66121

Complete College America. (2016). Corequisite Remediation: Spanning the Completion Divide. Retrieved from http://completecollege.org/spanningthedivide/

Jaggars, S. S., Edgecombe, N., & Stacey, G. W. (2014). What we know about accelerated developmental education. New York, NY: Columbia University, Teachers College, Community College Research Center.

 

Beyond Pro and Con: Re-thinking MOOCs

william j barry profile 2016 (1)

William J. Barry

While pursuing his research interests, which include effective technology use, especially among students in transition, William J. Barry teaches developmental reading at St. Edward’s University.  He also trains adult educators in partnership with the Texas Center for the Advancement of Literacy and Learning (TCALL), and teaches first-year seminar at Texas State University, where he is a PhD candidate in developmental education.

Questions of access and affordability remain at the heart of the developmental education discussion (Braun, 2016; Floyd, Felsher, & Ramdin, 2016), and as the results of Moore’s Law continue to bring the world increasingly powerful technology, stakeholders turn to ones and zeroes for answers.  Massive Open Online Courses (MOOCs) represent one such proposal enjoying ample coverage in the literature (e.g., Bastedo, 2016; McClure, 2016).  Advocates say MOOCs increase the accessibility of high-quality education while decreasing the costs (Carey, 2012; Teo, 2015), and critics point to the low academic rigor of MOOCs, while suggesting they profit at the expense of faculty and students (Axmann & Atkins, 2016; Marshall, 2014).

Despite this crucial debate, MOOC critiques rarely consider college students’ perceptions and attitudes.  While administrators, faculty, and media argue apace, it remains unclear how students view MOOCs.  As an educator in the developmental space, I consider students the primary stakeholders.  As such, I expect MOOC policy to benefit students first.  I expect researchers and faculty interested in MOOCs to focus on how students perceive these issues.  After all, their education faces significant transformation in the face of widespread MOOC implementation.

Such expectations drew my attention to a recent study (Cole & Timmerman, 2015), which examined students’ MOOC perceptions.  Using thematic analysis, Cole and Timmerman (2015) suggested students believe MOOCs hold the potential to augment lifelong learning, even though they serve as inferior alternatives to traditional coursework.  Students made their determinations based on several interesting criteria (see Figure 1), which suggest a deeper appreciation for what works in education.  These kinds of nuanced student responses also suggest the value of asking deeper questions regarding MOOC utility, rather than yielding to seductive pro/con binaries.  Answers to such questions inform decisions with regard to the place of MOOCs in higher education, and those decisions stand to affect each one of us in yet unseen ways.

Figure 1.

bill barrys infograph

Click on image to enlarge.

References

Axmann, M., & Atkins, R. (2016). Online community-based practices for massive open online courses (MOOCs) at Open Universities Australia: A case Study. User-Centered Design Strategies for Massive Open Online Courses (MOOCs), 83.

Bastedo, M. N. (2016). American higher education in the twenty-first century: Social, political, and economic challenges. Baltimore, MD: JHU Press.

Braun, H. (2016). The dynamics of opportunity in America: A working framework. In The Dynamics of Opportunity in America (pp. 137-164). New York: Springer International Publishing.

Carey, K. (2012, September 7). Into the future with MOOCs. Chronicle of Higher Education, 59(2), 29.

Cole, A. W., & Timmerman, C. E. (2015). What do current college students think about MOOCs? MERLOT Journal of Online Learning and Teaching, 11, 188-201.

Floyd, D. L., Felsher, R. A., & Ramdin, G. (2016). A retrospective of four decades of community college research. Community College Journal of Research and Practice40(1), 5-22.

Marshall, S. (2014). Exploring the ethical implications of MOOCs. Distance Education, 35, 250-262. doi:10.1080/01587919.2014.917706

McClure, M. W. (2016). Investing in MOOCs: “Frenemy” risk and information quality. In Globalisation and Higher Education Reforms (pp. 77-94). New York: Springer International Publishing.

Teo, T. H. (2015). Just-in-time teaching visual instruction for cohort base interactive learning for engineering course. GSTF Journal on Education (JEd)3(1).