Acceleration in Mathematics (AIM)

Photo_Anderson Foxley

JP Anderson, Ph.D., & Kristen Foxley

JP Anderson (Ph.D., Rice) and Kristen Foxley (M.S., University of Houston—Clear Lake) have been teaching math for over 20 years. They share not only a passion for teaching, but for running as well, and have been running together for the past 10 years. Both JP and Kristen were part of the original design team for AIM and have been co-teachers since its beginning in 2012.  In addition to working with students, they enjoy providing professional development for faculty on ways to incorporate active learning in the classroom and presenting on AIM at conferences at the local, state, and national level. 

Nationwide, over 40% of students enter college needing one or more developmental courses. Unfortunately, traditional methods of remediation are not successful in preparing students for success in credit-bearing courses. In Texas, for example, only 12% of community college students who begin in developmental math courses will pass a gateway math course, such as college algebra, within 2 years (Complete College America, 2016). Although counterintuitive to some practitioners, many colleges have improved success through accelerated course offerings (Jaggars, Edgecombe, and Stacey, 2014), with corequisite models showing particular promise (Complete College America, 2016).

After implementing such a model, Acceleration in Mathematics (AIM), in Fall 2012, San Jacinto College has seen a significant improvement in student success. A study of seven long semesters’ data showed that 64.1% of AIM students passed college algebra with a grade of C or better, compared to 44.8% in traditional college algebra classes. This is especially notable since the majority of AIM students who are placed into developmental math courses are one or two levels below college algebra. Moreover, AIM narrowed the success gap for Hispanic students—approximately half of our student population—from 6% to less than 1%. In addition to AIM’s impact on students’ cognitive learning and academic success of students, a separate study showed improvements in their attitudes, feelings, and mindset regarding their mathematical abilities (Campbell, 2015).

Acceleration in Mathematics is a one-semester corequisite pairing of math courses that allows students who are not college ready in mathematics to complete all developmental requirements as well as college algebra in a single semester. Students who take AIM sign up for two classes: a three-contact-hour developmental course and a four-contact-hour college algebra course.  A typical AIM section meets Monday through Friday for a total of seven hours each week. AIM is team-taught by two instructors, one experienced in teaching traditional college algebra and one who specializes in developmental math instruction, both of whom are in the classroom for all class meetings and who share equally in the teaching duties.

  • Just-in-Time Remediation. Unlike traditional multi-semester or accelerated sequential remediation models, which teach basic skills weeks or months before they are needed in college algebra, AIM integrates these skills right before they are needed in the college algebra curriculum. For example, simplification of radical expressions is introduced just before the quadratic equation.
  • Streamlining. AIM focuses on learning objectives prescribed by the Texas Higher Education Coordinating Board. Some skills that have been part of the traditional developmental math curriculum, but which are not needed for college algebra, such as rationalizing the denominator, have been eliminated.
  • Active Learning. Daily lessons alternate brief lectures with small-group practice activities. To maximize student interaction and foster a sense of community, instructors use a technique called “clock partners” to pair students with a different practice partner each day.
  • Low-Stakes Assessment/Prompt Feedback. AIM students turn in daily homework assignments of approximately 25 questions. A portion of the problems are graded, and the assignments are returned the following day. Answer keys are available online for the ungraded problems. Students are tested every other week, for a total of seven unit tests and a final exam. Each unit test counts only 9% of the semester grade, making it possible for students to recover from one or two setbacks.
  • Cumulative Review. Every homework assignment and exam contains review problems to help students maintain essential skills throughout the semester.
  • Learning Resources. AIM students have online access to instructor-authored videos providing examples of all topics and worked-out solutions to the exam review sheets. San Jacinto College’s Student Success Center has a designated AIM table for on-campus tutoring. Also, thanks to the strong sense of class community, AIM students often form study groups on their own.

AIM has proven most successful for students required to take college algebra for their associate’s degree. To support students who would benefit from an alternative math pathway, however, the college has begun offering corequisite courses for developmental students seeking credit in a statistics or quantitative reasoning course. Early results show that these pathways show similar promise.

References

Campbell, P.S. (2016). Self-Efficacy in a Co-requisite Model of Developmental Mathematics and College Algebra: A Qualitative Analysis of Student Perceptions (Doctoral Dissertation). Retrieved from https://ttu-ir.tdl.org/ttu-ir/handle/2346/66121

Complete College America. (2016). Corequisite Remediation: Spanning the Completion Divide. Retrieved from http://completecollege.org/spanningthedivide/

Jaggars, S. S., Edgecombe, N., & Stacey, G. W. (2014). What we know about accelerated developmental education. New York, NY: Columbia University, Teachers College, Community College Research Center.

 

Motivate Learning Through Online Games

Lutze Pic

Holly Lutze, Ph.D.

Dr. Holly Lutze is an Assistant Professor in Business and Economics at Texas Lutheran University with 12 years of experience teaching Operations Management. She holds a B.S. in Industrial Engineering and Engineering Management from Oklahoma State University. Her M.S. in Engineering-Economic Systems and Operations Research and Ph.D. in Management Science and Engineering are from Stanford University.

Professors often have students demonstrate classroom learning through simulation games. Textbook publishers underscore the need for high quality, meaningful, and practical experiences to exercise new knowledge (Barko & Sadler, 2003). These simulation games are wonderful but are often applied only after the instruction takes place (Squire, 2003).

Simple, free, online games can effectively introduce ideas and provide playful examples for use later in a semester. My students may play with Legos, throw paper wads, or dig through my garbage. However, their interest is piqued when I ask them to bring laptops or tablets to class.

Video games can be used to stimulate learning in the classroom. Some instructors resist this practice due to time constraints or because they believe the strategy conflicts with their traditional teaching methods (Kirriemui & McFarlane, 2014; Squire, 2003) The challenge of engaging students with different interests, backgrounds, learning styles, and aptitudes is one we all face (Barko & Sadler, 2003; Kelly, 2005; Bowman, 1982).

While my classes may teeter on the edge of chaos at first, pulling a classroom into productive discussion fits well with my pedagogical strategy.  I want to form an environment where all students feel comfortable interacting with classmates and with me (Kelly, 2005). My instruction frames what students observe in a game and expands upon it (Squire, 2003). Sometimes concepts relate immediately, and sometimes I refer to the games later in the semester, as examples.

One game I use effectively in Operations Management is Patient Shuffle, available through GE Healthcare Partners. Used to introduce the differences between production organizations and service organizations, the premise of the game is to run a hospital. Patients follow different sequences of treatments, spend varying amounts of time in each room, and leave by either foot or helicopter. Student performance is measured by the number of patients treated and the general mood of the patients.

Students audibly express frustrations throughout the game, but these frustrations are exactly what I am looking for. To elicit student engagement, I follow up five rounds with the following four questions.

(1) What made this game difficult? Comments lead to discussions of measuring productivity, customization in a process focus, and resource limitations.

(2) What would have made the game easier? Comments lead to discussions of capacity planning, scheduling, and strategies for process-oriented layout.

(3) What did you do to improve over time? I point out that they already demonstrate problem solving skills that can help them be successful operations managers.

(4) Who did the best, and what was the secret to his/her success? We talk about benchmarking and, time permitting, allow students to try to improve performance at the end of the fifty-minute class.

Finding free online games that relate to my teaching goals can be tricky. If a game elicits relevant answers to the above four questions, I know I have found a good one. Bottling the magic of Pac-Man in a productive and educational learning environment (Bowman, 1982) is not impossible. 

References

Barko, T., & Sadler, T. (2013). Practicality in virtuality: Finding student meaning in video game education. Journal of Science Education & Technology, 22(2), 124-132.

Kelly, H. (2005). Games, cookies, and the future of education. Issues in Science & Technology, 21(4), 33-40.

Bowman, R. F. (1982). A pac-man theory of motivation: tactical implications for classroom instruction. Educational Technology, 22, 14-17.

Squire, K. (2003). Video games in education. International Journal of Intelligent Games & Simulation,  2, 49-62.

 

Metacognition: Critical Start for Literacy Instruction

Tasha Vice bio pic

Tasha Vice, Ph.D.

Tasha Vice studied at Eastern New Mexico University, where she received a M.Ed. in Secondary Education and M.A. in English. She continued to study Curriculum and Instruction at Texas Tech University, where she earned a Ph.D. with an emphasis in Language and Literacy.  Currently, she is an Associate Professor of Reading and Education at South Plains College, where she teaches Developmental Reading as well as Integrated Reading and Writing. In addition, she instructs Learning Frameworks courses with a focus on cognitive neuroscience and psychological theories of learning. Her research interests include content literacy, critical literacy, and cognitive or metacognitive factors related to reading success. She can be reached by e-mail at tvice@southplainscollege.edu.

Core literacy skills are necessary for success. Yet, students lack the reading skills for literacy (ACT, 2011). Improving literacy is the responsibility in all content areas. However, colleges rely on developmental education to address the needs of literacy students (Boylan, 2001; NADE, 2011). Many developmental students believe they don’t need literacy improvement (Vice, 2013) and are resistant to learning (Lesley, 2001; Lesley, 2004). How can faculty help these students succeed?

Direct and explicit instruction of cognitive and affective strategies, content knowledge, and contextual skills are key. Responsive pedagogy addresses some components:

  • Advising, counseling, and support systems (NADE, 2011),
  • Opportunities to deconstruct negative feelings about learning (Lesley, 2001),
  • Activities to reconstruct or develop literacy identities (Gee, 2002),
  • Self-analysis of skill and attitude over time (Moje, 2008),
  • Social, emotional, cultural, and ideological contexts in the classroom (Chiu-hui and Cody, 2010).

Each of these is important, but none solely guarantees success. To increase success, educators should introduce metacognition, thinking about thinking (Flavell, 1979). Accurate metacognition is required to maintain focus, attention, motivation, and self-efficacy (Conley, 2005). Metacognition also includes a personal understanding of one’s performance and persistence (Conley, 2007).

Developmental students’ inaccurate perceptions are rooted in their personal beliefs about their abilities (Lesley, 2004). Dweck (2006) argues those students who believe their skills and abilities cannot change suffer from a fixed mindset. Students with a fixed mindset lack motivation for learning and cannot cope with failure. Students with growth mindset and who believe they can change are likely to embrace learning. Instructing students on the concept of mindsets can help them reduce resistance and embrace change as literacy learners.

“A growth mindset is telling yourself or someone else that you can do anything, no matter the challenge, with time, attention, and practice.” (Literacy Student, Fall 2015)

Duckworth (2016) argues that grit (persistence and perseverance) is the only determining factor of success. Students should reflect on their failures and develop plans to monitor, regulate, and direct their own thinking. Challenging students to go through these processes can help them increase their grit and succeed.

“Set up your mind. Believe. Make your brain work! Tell your mind ‘never give up’. Don’t let falling down, someone, or something affect you!” (Literacy Student, Fall 2015)

Mindsets theory provides insight into students’ inaccurate perceptions and may help them focus on growth while grit helps students to understand and persist as they perform literacy tasks.

“Metacognition is important because it helps us be successful! When we have a growth mindset, we are ready to grow and accept mistakes. With grit, we get through it and learn new things even if we fail. This helped me believe in myself, and I think I can do it!” (Literacy Student, Fall 2015)

As a critical starting point for literacy instruction, educators should explore practices and investigate the possibilities of using Mindsets and Grit theories that address students’ metacognition.

References

Act., Inc. (2011). “The Condition of College & Career Readiness: 2011”  Retrieved from http://www.act.org/research/policymakers/cccr11/index.html

Bandura, A. (1997).  Self-efficacy:  The exercise of control.  New York:  Freeman.

Boylan, H. (2001). Making the case for developmental education. Research in
Developmental Education , 12 (2), 1-4.

Chiu-hui, W. & Cody, M. (2010).  ‘The United States is America?’:  A cultural
perspective on READ 180 materials.  Language, Culture and Curriculum, 23(2),
153-165.  Doi:10.1080/07908318.2010.49732

Conley, D. T. (2007).  Redefining college readiness.  Educational policy improvement.
Eugene, OR: Gates Foundation.

– – -.  (2005). College knowledge: What it really takes for students to succeed
and what we can do to get them ready. San Fransisco: Jossey-Bass.
pedagogy.  Reading Research and Instruction. 44 (1) 62-85.

Duckworth, A. (2016).  Grit: The power of passion and perseverance. New York. Simon and
Schuster.

Dweck, C. S. (2006).  Mindset:  The new psychology of success. New York. Random House.

Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-
developmental inquiry. American Psychologist, v34 n10 p906-11 Oct 1979.

Gee, J. (2002).  Literacies, identities, and discourses, In Mary Schleppegrel & M. Cecilia
Colombia. Eds., Developing Advanced Literacy in First and Second Languages:  Meaning
with Power, Mahwah, NJ:  Lawrence Erlbaum, 2002, pp. 159-175.

Lesley, M. (2001).  Exploring the links between critical literacy and developmental
reading.  Journal of Adolescent & Adult Literacy, 45(3), 180-89.

Lesley, M. (2004).  Refugees from reading:  Students perceptions of “remedial” Literacy

Moje, E. B. (2008).  Foregrounding the disciplines in secondary literacy teaching and learning: A
call for change.  Journal of Adolescent and Adult Literacy,52(2), 96-107.

Vice, T. A. (2013). “Illuminating Teaching and Learning: Students’ Metacognition and Teacher
Responsiveness in One College Developmental Reading Class” (Unpublished doctoral
dissertation).  Texas Tech University, Lubbock, TX.